Transient behaviour of electrovortex flow in a cylindrical container

Author:

Abstract

The mechanical behaviour of the oxide film that develops at the metal-air interface of molten A356 aluminum alloy is investigated in relation to the oxidation level. Based on two previous papers - the first one focusing on the chemical aspects of the oxidation process at the liquid surface of molten aluminum, the second one focusing on its mechanical characterization, the present paper aims at reconciling these two approaches usually considered separately in the literature and proposes a stand-alone mechano-chemical model. The oxidation process is first characterized from thermogravimetric analyses together with scanning electron microscopy imaging. Then the mechanical properties of the oxide layer are determined at a given oxidation level, making use of a new annular MHD surface viscometer placed inside a chemical reactor. The kinetic study delivers a better understanding of the oxidation process involved at the surface of the A356 alloy and leads to the development of a revised version of the Deal−Grove model. In addition, the mechanical study reveals the highly viscous and shear-thinning behaviours of the oxide layer. Figs 3, Refs 14.

Publisher

University of Latvia

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3