Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts

Author:

Guarnieri Joseph W.123ORCID,Dybas Joseph M.23ORCID,Fazelinia Hossein23,Kim Man S.1234ORCID,Frere Justin5ORCID,Zhang Yuanchao123,Soto Albrecht Yentli123ORCID,Murdock Deborah G.12ORCID,Angelin Alessia12ORCID,Singh Larry N.123ORCID,Weiss Scott L.12,Best Sonja M.36ORCID,Lott Marie T.12ORCID,Zhang Shiping12ORCID,Cope Henry7ORCID,Zaksas Victoria389ORCID,Saravia-Butler Amanda31011ORCID,Meydan Cem312ORCID,Foox Jonathan12,Mozsary Christopher12,Bram Yaron12ORCID,Kidane Yared313,Priebe Waldemar314,Emmett Mark R.315ORCID,Meller Robert316ORCID,Demharter Sam17ORCID,Stentoft-Hansen Valdemar17ORCID,Salvatore Marco17,Galeano Diego318ORCID,Enguita Francisco J.319ORCID,Grabham Peter20,Trovao Nidia S.321,Singh Urminder322,Haltom Jeffrey12322ORCID,Heise Mark T.23,Moorman Nathaniel J.23,Baxter Victoria K.23,Madden Emily A.23ORCID,Taft-Benz Sharon A.23,Anderson Elizabeth J.23ORCID,Sanders Wes A.23,Dickmander Rebekah J.23ORCID,Baylin Stephen B.324ORCID,Wurtele Eve Syrkin322ORCID,Moraes-Vieira Pedro M.325ORCID,Taylor Deanne123ORCID,Mason Christopher E.31226ORCID,Schisler Jonathan C.323ORCID,Schwartz Robert E.312ORCID,Beheshti Afshin32728ORCID,Wallace Douglas C.12329ORCID

Affiliation:

1. Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

2. Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

3. COVID-19 International Research Team, Medford, MA 02155, USA .

4. Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea.

5. Icahn School of Medicine at Mount Sinai, New York, NY 10023, USA.

6. Rocky Mountain Laboratory, National Institute of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA.

7. University of Nottingham, Nottingham, UK.

8. University of Chicago, Chicago, IL 60615, USA.

9. Clever Research Lab, Springfield, IL 62704, USA.

10. Logyx, LLC, Mountain View, CA 94043, USA.

11. NASA Ames Research Center, Moffett Field, CA 94035, USA.

12. Weill Cornell Medicine, New York, NY 10065, USA.

13. Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA.

14. University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

15. University of Texas Medical Branch, Galveston, TX 77555, USA.

16. Morehouse School of Medicine, Atlanta, GA 30310, USA.

17. DKAbzu ApS, Copenhagen 2150, Denmark.

18. Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay.

19. Faculdade de Medicina, Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisboa, Portugal.

20. College of Physicians and Surgeons, Columbia University, New York, NY 19103, USA.

21. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.

22. Iowa State University, Ames, IA 50011, USA.

23. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

24. Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.

25. University of Campinas, Campinas, SP, Brazil.

26. New York Genome Center, New York, NY 10013, USA.

27. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

28. KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.

29. Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)–encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3