Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti–PD-1 immunotherapy

Author:

Theivanthiran Balamayooran1ORCID,Yarla Nagendra1,Haykal Tarek1ORCID,Nguyen Y.-Van1ORCID,Cao Linda1ORCID,Ferreira Michelle1ORCID,Holtzhausen Alisha2ORCID,Al-Rohil Rami3ORCID,Salama April K.S.1,Beasley Georgia M.4ORCID,Plebanek Michael P.1,DeVito Nicholas C.1ORCID,Hanks Brent A.15ORCID

Affiliation:

1. Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.

2. Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

3. Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA.

4. Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.

5. Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA.

Abstract

The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome–heat shock protein 70 (HSP70) signaling axis is triggered by CD8 + T cell cytotoxicity and contributes to the development of adaptive resistance to anti–programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti–PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti–PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti–PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti–PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3