Schwann cells in the subcutaneous adipose tissue have neurogenic potential and can be used for regenerative therapies

Author:

Stavely Rhian1ORCID,Hotta Ryo1,Picard Nicole1,Rahman Ahmed A.1,Pan Weikang1ORCID,Bhave Sukhada1,Omer Meredith1ORCID,Ho Wing Lam N.1ORCID,Guyer Richard A.1ORCID,Goldstein Allan M.1ORCID

Affiliation:

1. Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Abstract

Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest–derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3