JAGGED-NOTCH3 signaling in vascular remodeling in pulmonary arterial hypertension

Author:

Zhang Yu1ORCID,Hernandez Moises1ORCID,Gower Jonathan1,Winicki Nolan1ORCID,Morataya Xena1ORCID,Alvarez Sebastian1ORCID,Yuan Jason X.-J.2ORCID,Shyy John2,Thistlethwaite Patricia A.1ORCID

Affiliation:

1. Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA.

2. Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

Abstract

Within the pulmonary arterial tree, the NOTCH3 pathway is crucial in controlling vascular smooth muscle cell proliferation and maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (PAH) is a fatal disease without cure, characterized by elevated pulmonary vascular resistance due to vascular smooth muscle cell proliferation in precapillary arteries, perivascular inflammation, and asymmetric neointimal hyperplasia. Here, we show that human PAH is characterized by overexpression of the NOTCH ligand JAGGED-1 (JAG-1) in small pulmonary artery smooth muscle cells and that JAG-1 selectively controls NOTCH3 signaling and cellular proliferation in an autocrine fashion. In contrast, the NOTCH ligand DELTA-LIKE 4 is minimally expressed in small pulmonary artery smooth muscle cells from individuals with PAH, inhibits NOTCH3 cleavage and signaling, and retards vascular smooth muscle cell proliferation. A new monoclonal antibody for the treatment of PAH, which blocks JAG-1 cis- and trans-induced cleavage of the NOTCH3 receptor in the pulmonary vasculature, was developed. Inhibition of JAG-1–induced NOTCH3 signaling in the lung reverses clinical and pathologic pulmonary hypertension in two rodent models of disease, without toxic side effects associated with nonspecific NOTCH inhibitors. Our data suggest opposing roles of NOTCH ligands in the pulmonary vasculature in pulmonary hypertension. We propose that selectively targeting JAG-1 activation of NOTCH3 may be an effective, safe strategy to treat PAH.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3