Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors

Author:

Tavares-Ferreira Diana1ORCID,Shiers Stephanie1ORCID,Ray Pradipta R.1ORCID,Wangzhou Andi1ORCID,Jeevakumar Vivekanand1,Sankaranarayanan Ishwarya1,Cervantes Anna M.2ORCID,Reese Jeffrey C.2ORCID,Chamessian Alexander3ORCID,Copits Bryan A.3,Dougherty Patrick M.4ORCID,Gereau Robert W.3ORCID,Burton Michael D.1ORCID,Dussor Gregory1,Price Theodore J.1ORCID

Affiliation:

1. Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.

2. Southwest Transplant Alliance , Dallas, TX 75231, USA.

3. Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA.

4. Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Abstract

Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein–coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha ( CALCA ) expression in female pruritogen receptor–enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3