Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort

Author:

Carapito Raphael123ORCID,Li Richard4ORCID,Helms Julie135,Carapito Christine36ORCID,Gujja Sharvari4,Rolli Véronique123ORCID,Guimaraes Raony4,Malagon-Lopez Jose4,Spinnhirny Perrine13,Lederle Alexandre13,Mohseninia Razieh7,Hirschler Aurélie36ORCID,Muller Leslie36,Bastard Paul8910ORCID,Gervais Adrian910ORCID,Zhang Qian8910ORCID,Danion François1311ORCID,Ruch Yvon311ORCID,Schenck Maleka312ORCID,Collange Olivier313,Chamaraux-Tran Thiên-Nga314,Molitor Anne13ORCID,Pichot Angélique13ORCID,Bernard Alice13,Tahar Ouria23ORCID,Bibi-Triki Sabrina13,Wu Haiguo4,Paul Nicodème13ORCID,Mayeur Sylvain13,Larnicol Annabel13,Laumond Géraldine13,Frappier Julia13ORCID,Schmidt Sylvie13,Hanauer Antoine13,Macquin Cécile13ORCID,Stemmelen Tristan123ORCID,Simons Michael15ORCID,Mariette Xavier1617ORCID,Hermine Olivier1018ORCID,Fafi-Kremer Samira1319ORCID,Goichot Bernard320ORCID,Drenou Bernard21ORCID,Kuteifan Khaldoun22ORCID,Pottecher Julien314,Mertes Paul-Michel313ORCID,Kailasan Shweta23,Aman M. Javad23,Pin Elisa24ORCID,Nilsson Peter24ORCID,Thomas Anne25ORCID,Viari Alain25ORCID,Sanlaville Damien25,Schneider Francis312,Sibilia Jean1326,Tharaux Pierre-Louis27ORCID,Casanova Jean-Laurent891028ORCID,Hansmann Yves311ORCID,Lidar Daniel729ORCID,Radosavljevic Mirjana123ORCID,Gulcher Jeffrey R.4,Meziani Ferhat35,Moog Christiane13ORCID,Chittenden Thomas W.430,Bahram Seiamak123ORCID

Affiliation:

1. Laboratoire d’ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM (Institut de la Santé et de la Recherche Médicale) UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg, 67085 Strasbourg, France.

2. Service d’Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 67091 Strasbourg, France.

3. Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d’Immunologie et d’Hématologie, 67085, Strasbourg, France.

4. Genuity AI Research Institute, Genuity Science, Boston, MA 02114, USA.

5. Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France.

6. Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000 Strasbourg, France.

7. Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, CA 90089, USA.

8. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.

9. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France.

10. University of Paris, Imagine Institute, 75015 Paris, France.

11. Department of Infectious and Tropical Diseases, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France.

12. Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Avenue Molière, 67200 Strasbourg, France.

13. Service d’Anesthésie-Réanimation et Médecine Péri-Opératoire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.

14. Service d’Anesthésie-Réanimation et Médecine Péri-Opératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; 67200 Strasbourg Cedex, France.

15. Yale Cardiovascular Research Center, Departments of Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.

16. Department of Rheumatology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Paris, France.

17. Université Paris-Saclay, INSERM UMR_S 1184; 94270 Le Kremlin Bicêtre, France.

18. Department of Hematology, INSERM UMR_S 1153, Imagine Institute, Necker Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.

19. Department of Virology, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France.

20. Service de Médecine Interne, Endocrinologie et Nutrition, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.

21. Département d’Hématologie, Groupe Hospitalier de la région Mulhouse Sud Alsace, 68100 Mulhouse, France.

22. Service de Réanimation Médicale, Groupe Hospitalier de la région Mulhouse Sud Alsace, 68100 Mulhouse, France.

23. Integrated BioTherapeutics Inc., Rockville, MD 20850, USA.

24. Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm SE-171 21, Sweden.

25. Plateforme Auragen, 69003 Lyon, France.

26. Service de Rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.

27. INSERM, Université de Paris, Paris Cardiovascular Center-PARCC, 75015 Paris, France.

28. Howard Hughes Medical Institute, New York, NY 10065, USA.

29. Departments of Electrical and Computer Engineering, Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.

30. Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston MA 02115, USA.

Abstract

The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 “critical” (in the intensive care unit under mechanical ventilation) and 25 “non-critical” (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9 . This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3