Cell Signaling and the Genesis of Neuropathic Pain

Author:

Ji Ru-Rong1,Strichartz Gary12

Affiliation:

1. Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.

2. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Abstract

Damage to the nervous system can cause neuropathic pain, which is in general poorly treated and involves mechanisms that are incompletely known. Currently available animal models for neuropathic pain mainly involve partial injury of peripheral nerves. Multiple inflammatory mediators released from damaged tissue not only acutely excite primary sensory neurons in the peripheral nervous system, producing ectopic discharge, but also lead to a sustained increase in their excitability. Hyperexcitability also develops in the central nervous system (for instance, in dorsal horn neurons), and both peripheral and spinal elements contribute to neuropathic pain, so that spontaneous pain may occur or normally innocuous stimuli may produce pain. Inflammatory mediators and aberrant neuronal activity activate several signaling pathways [including protein kinases A and C, calcium/calmodulin-dependent protein kinase, and mitogen-activated protein kinases (MAPKs)] in primary sensory and dorsal horn neurons that mediate the induction and maintenance of neuropathic pain through both posttranslational and transcriptional mechanisms. In particular, peripheral nerve lesions result in activation of MAPKs (p38, extracellular signal–regulated kinase, and c-Jun N-terminal kinase) in microglia or astrocytes in the spinal cord, or both, leading to the production of inflammatory mediators that sensitize dorsal horn neurons. Activity of dorsal horn neurons, in turn, enhances activation of spinal glia. This neuron-glia interaction involves positive feedback mechanisms and is likely to enhance and prolong neuropathic pain even in the absence of ongoing peripheral external stimulation or injury. The goal of this review is to present evidence for signaling cascades in these cell types that not only will deepen our understanding of the genesis of neuropathic pain but also may help to identify new targets for pharmacological intervention.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3