Human motor augmentation with an extra robotic arm without functional interference

Author:

Dominijanni Giulia1ORCID,Pinheiro Daniel Leal12ORCID,Pollina Leonardo1ORCID,Orset Bastien1ORCID,Gini Martina34,Anselmino Eugenio3ORCID,Pierella Camilla5,Olivier Jérémy6ORCID,Shokur Solaiman13ORCID,Micera Silvestro13ORCID

Affiliation:

1. Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

2. Neuroengineering and Neurocognition Laboratory, Escola Paulista de Medicina, Department of Neurology and Neurosurgery, Division of Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil.

3. BioRobotics Institute, Health Interdisciplinary Center, and Department of Excellence in AI and Robotics, Scuola Superiore Sant’Anna, Pisa, Italy.

4. Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.

5. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI), University of Genoa, Genoa, Italy.

6. Institute for Industrial Sciences and Technologies, Haute Ecole du Paysage, d’Ingénierie et d’Architecture (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.

Abstract

Extra robotic arms (XRAs) are gaining interest in neuroscience and robotics, offering potential tools for daily activities. However, this compelling opportunity poses new challenges for sensorimotor control strategies and human-machine interfaces (HMIs). A key unsolved challenge is allowing users to proficiently control XRAs without hindering their existing functions. To address this, we propose a pipeline to identify suitable HMIs given a defined task to accomplish with the XRA. Following such a scheme, we assessed a multimodal motor HMI based on gaze detection and diaphragmatic respiration in a purposely designed modular neurorobotic platform integrating virtual reality and a bilateral upper limb exoskeleton. Our results show that the proposed HMI does not interfere with speaking or visual exploration and that it can be used to control an extra virtual arm independently from the biological ones or in coordination with them. Participants showed significant improvements in performance with daily training and retention of learning, with no further improvements when artificial haptic feedback was provided. As a final proof of concept, naïve and experienced participants used a simplified version of the HMI to control a wearable XRA. Our analysis indicates how the presented HMI can be effectively used to control XRAs. The observation that experienced users achieved a success rate 22.2% higher than that of naïve users, combined with the result that naïve users showed average success rates of 74% when they first engaged with the system, endorses the viability of both the virtual reality–based testing and training and the proposed pipeline.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3