Neuromorphic sequence learning with an event camera on routes through vegetation

Author:

Zhu Le1ORCID,Mangan Michael2ORCID,Webb Barbara1ORCID

Affiliation:

1. School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, UK.

2. Sheffield Robotics, Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK.

Abstract

For many robotics applications, it is desirable to have relatively low-power and efficient onboard solutions. We took inspiration from insects, such as ants, that are capable of learning and following routes in complex natural environments using relatively constrained sensory and neural systems. Such capabilities are particularly relevant to applications such as agricultural robotics, where visual navigation through dense vegetation remains a challenging task. In this scenario, a route is likely to have high self-similarity and be subject to changing lighting conditions and motion over uneven terrain, and the effects of wind on leaves increase the variability of the input. We used a bioinspired event camera on a terrestrial robot to collect visual sequences along routes in natural outdoor environments and applied a neural algorithm for spatiotemporal memory that is closely based on a known neural circuit in the insect brain. We show that this method is plausible to support route recognition for visual navigation and more robust than SeqSLAM when evaluated on repeated runs on the same route or routes with small lateral offsets. By encoding memory in a spiking neural network running on a neuromorphic computer, our model can evaluate visual familiarity in real time from event camera footage.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3