Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot

Author:

Hong Seungwoo1ORCID,Um Yong1ORCID,Park Jaejun2ORCID,Park Hae-Won1ORCID

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Abstract

A climbing robot that can rapidly move on diverse surfaces such as floors, walls, and ceilings will have an enlarged operational workspace compared with other terrestrial robots. However, the climbing skill of robots in such environments has been limited to low speeds or simple locomotion tasks. Here, we present an untethered quadrupedal climbing robot called MARVEL (magnetically adhesive robot for versatile and expeditious locomotion), capable of agile and versatile climbing locomotion in ferromagnetic environments. MARVEL excels over prior climbing robots in terms of climbing speed and ability to execute various motions. It demonstrates the fastest vertical and inverted walking speed, whereas its versatile locomotion ability enables the highest number of gaits and locomotion tasks. The key innovations are an integrated foot design using electropermanent magnets and magnetorheological elastomers that provide large adhesion and traction forces, torque control actuators, and a model predictive control framework adapted for stable climbing. In experiments, the robot achieved locomotion on ceilings and vertical walls up to 0.5 meter (1.51 body lengths) per second and 0.7 meter (2.12 body lengths) per second, respectively. Furthermore, the robot exhibited complex behaviors such as stepping over 10-centimeter-wide gaps; overcoming 5-centimeter-high obstacles; and making transitions between floors, walls, and ceilings. We also show that MARVEL could climb on a curved surface of a storage tank covered with up to 0.3-millimeter-thick paint with rust and dust.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3