Morphological computation and decentralized learning in a swarm of sterically interacting robots

Author:

Ben Zion Matan Yah123ORCID,Fersula Jeremy12,Bredeche Nicolas2ORCID,Dauchot Olivier1ORCID

Affiliation:

1. Gulliver UMR CNRS 7083, ESPCI, PSL Research University, 75005 Paris, France.

2. Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, CNRS, ISIR, F-75005 Paris, France.

3. School of Physics and Astronomy and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel.

Abstract

Whereas naturally occurring swarms thrive when crowded, physical interactions in robotic swarms are either avoided or carefully controlled, thus limiting their operational density. Here, we present a mechanical design rule that allows robots to act in a collision-dominated environment. We introduce Morphobots, a robotic swarm platform developed to implement embodied computation through a morpho-functional design. By engineering a three-dimensional printed exoskeleton, we encode a reorientation response to an external body force (such as gravity) or a surface force (such as a collision). We show that the force orientation response is generic and can augment existing swarm robotic platforms (e.g., Kilobots) as well as custom robots even 10 times larger. At the individual level, the exoskeleton improves motility and stability and also allows encoding of two contrasting dynamical behaviors in response to an external force or a collision (including collision with a wall or a movable obstacle and on a dynamically tilting plane). This force orientation response adds a mechanical layer to the robot’s sense-act cycle at the swarm level, leveraging steric interactions for collective phototaxis when crowded. Enabling collisions also promotes information flow, facilitating online distributed learning. Each robot runs an embedded algorithm that ultimately optimizes collective performance. We identify an effective parameter that controls the force orientation response and explore its implications in swarms that transition from dilute to crowded. Experimenting with physical swarms (of up to 64 robots) and simulated swarms (of up to 8192 agents) shows that the effect of morphological computation increases with growing swarm size.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3