Fully body visual self-modeling of robot morphologies

Author:

Chen Boyuan1ORCID,Kwiatkowski Robert1ORCID,Vondrick Carl12ORCID,Lipson Hod23ORCID

Affiliation:

1. Department of Computer Science, Columbia University, New York, NY, USA.

2. Data Science Institute, Columbia University, New York, NY, USA.

3. Department of Mechanical Engineering, Columbia University, New York, NY, USA.

Abstract

Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These “self-models” allow robots to consider outcomes of multiple possible future actions without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward kinematic models can only predict limited aspects of the morphology, such as the position of end effectors or velocity of joints and masses. A key challenge is to model the entire morphology and kinematics without prior knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of directly modeling forward kinematics, a more useful form of self-modeling is one that could answer space occupancy queries, conditioned on the robot’s state. Such query-driven self-models are continuous in the spatial domain, memory efficient, fully differentiable, and kinematic aware and can be used across a broader range of tasks. In physical experiments, we demonstrate how a visual self-model is accurate to about 1% of the workspace, enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the robot to detect, localize, and recover from real-world damage, leading to improved machine resiliency.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3