Affiliation:
1. Institute of General Pathology and Giovanni XXIII Cancer Research Centre, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
Abstract
A recent paper by Schmitz and colleagues provides persuasive evidence that the ion channel transient receptor potential melastatin 7 (TRPM7) may be the long-sought regulator of magnesium (Mg) homeostasis in mammalian cells. This finding is not unexpected, because TRPM channels contain a kinase domain that allows them to participate in signal transduction pathways and regulatory networks. However, these studies introduce an exciting new twist into our understanding of Mg homeostasis; TRPM7 facilitates Mg entry into the cell, whereas other putative Mg transporters apparently operate in the opposite direction. By combining electrophysiological, biochemical, and genetic approaches, Schmitz and colleagues characterized most of the key features that demonstrate a well-defined and biologically plausible regulator of Mg homeostasis. TRPM7 genetics are well in hand, its regulation by intracellular free Mg
2+
unravels the mechanisms of regulatory feedback loops, and its kinase domain modulates its sensitivity to free Mg
2+
. These findings are discussed in light of the indirect and descriptive information we had about Mg regulation before this rigorous characterization of TRPM7 brought it to the center of the Mg stage. Although the molecular events downstream of TRPM7 phosphorylation and dephosphorylation await in-depth elucidation, these results open up exciting perspectives in Mg research and may provide a much-needed tool with which to reexamine the role of Mg in cell proliferation and other important pathophysiologic events. Likewise, these findings will offer guidelines for research on disease states that are characterized by Mg imbalance.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献