Affiliation:
1. Department of Biology, University of Maryland, College Park, MD 20742, USA.
2. Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Abstract
Mechanosensitive ion channels are the primary transducers that convert mechanical force into an electrical or chemical signal in hearing, touch, and other mechanical senses. Unlike vision, olfaction, and some types of taste, which all use similar kinds of primary heterotrimeric GTP-binding protein–coupled receptors, mechanosensation relies on diverse types of transducer molecules. Unrelated types of channels can be used for the perception of various mechanical stimuli, not only in distant groups of organisms, but also in separate locations of the same organism. The extreme sensitivity of the transduction mechanism in the auditory system, which relies on an elaborate structure of rigid cilia, filamentous links, and molecular motors to focus force on transduction channels, contrasts with that of the bacterial channel MscL, which is opened by high lateral tension in the membrane and fulfills a safety-valve rather than a sensory function. The spatial scales of conformational movement and force in these two systems are described, and are shown to be consistent with a general physical description of mechanical channel gating. We outline the characteristics of several types of mechanosensitive channels and the functional contexts in which they participate in signaling and cellular regulation in sensory and nonsensory cells.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献