Innate Immune Defense Through RNA Interference

Author:

Fritz Jörg H.1,Girardin Stephen E.2,Philpott Dana J.1

Affiliation:

1. Department of Immunology, Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8.

2. Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8.

Abstract

RNA interference (RNAi, also known as RNA silencing) has recently emerged as a fundamental and widespread regulator of gene expression. New developments in this field implicate RNAi in the innate immune response to infection in plants and animals. Evidence from plants, tissue culture cells, and Caenorhabditis elegans –based systems previously suggested that RNAi plays a role in the defense against viral infection, but definitive evidence using viruses and whole animals has been lacking. Two recent reports now show that both Drosophila embryos and adult flies mount a substantial innate immune response to insect viruses that requires the RNAi machinery. This innate response is distinct from known bacterial and fungal defense systems provided by the Toll and immune deficiency (Imd) pathways, thus defining a previously unrecognized strategy to fight viral infection. Whether RNAi, aside from its function in counteracting viruses, is also used to fight bacterial infection remained enigmatic. New evidence, however, now shows that in Arabidopsis , the bacterial component, flagellin, induces the expression of a specific microRNA, which in turn leads to the down-regulation of the signaling pathways that are implicated in disease susceptibility. This down-regulation then increases the plant's resistance to infection. Whether RNAi mechanisms also exist for combating bacterial diseases in animals remains an intriguing question for future studies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modifying lignin: A promising strategy for plant disease control;International Journal of Biological Macromolecules;2024-06

2. Host‐induced gene silencing in wild apple germplasm Malus hupehensis confers resistance to the fungal pathogen Botryosphaeria dothidea;The Plant Journal;2024-03-02

3. Host-Induced Gene Silencing: Approaches in Plant Disease Management;Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management;2022

4. Abalone Viral Ganglioneuritis;Pathogens;2020-09-01

5. Viral Sepsis;Annual Update in Intensive Care and Emergency Medicine;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3