Contrasting effects of bioenergy crops on biodiversity

Author:

Haan Nathan L.123ORCID,Benucci Gian N. M.24ORCID,Fiser Cynthia M.1ORCID,Bonito Gregory24ORCID,Landis Douglas A.12

Affiliation:

1. Department of Entomology, Michigan State University, East Lansing, MI, USA.

2. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.

3. Department of Entomology, University of Kentucky, Lexington, KY, USA.

4. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.

Abstract

Agriculture is driving biodiversity loss, and future bioenergy cropping systems have the potential to ameliorate or exacerbate these effects. Using a long-term experimental array of 10 bioenergy cropping systems, we quantified diversity of plants, invertebrates, vertebrates, and microbes in each crop. For many taxonomic groups, alternative annual cropping systems provided no biodiversity benefits when compared to corn (the business-as-usual bioenergy crop in the United States), and simple perennial grass–based systems provided only modest gains. In contrast, for most animal groups, richness in plant-diverse perennial systems was much higher than in annual crops or simple perennial systems. Microbial richness patterns were more eclectic, although some groups responded positively to plant diversity. Future agricultural landscapes incorporating plant-diverse perennial bioenergy cropping systems could be of high conservation value. However, increased use of annual crops will continue to have negative effects, and simple perennial grass systems may provide little improvement over annual crops.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3