Selective area doping for Mott neuromorphic electronics

Author:

Deng Sunbin1ORCID,Yu Haoming1ORCID,Park Tae Joon1ORCID,Islam A. N. M. Nafiul2ORCID,Manna Sukriti34ORCID,Pofelski Alexandre5ORCID,Wang Qi1ORCID,Zhu Yimei5ORCID,Sankaranarayanan Subramanian K. R. S.34ORCID,Sengupta Abhronil2,Ramanathan Shriram1ORCID

Affiliation:

1. School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.

2. School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA.

3. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.

4. Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL 60607, USA.

5. Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.

Abstract

The cointegration of artificial neuronal and synaptic devices with homotypic materials and structures can greatly simplify the fabrication of neuromorphic hardware. We demonstrate experimental realization of vanadium dioxide (VO 2 ) artificial neurons and synapses on the same substrate through selective area carrier doping. By locally configuring pairs of catalytic and inert electrodes that enable nanoscale control over carrier density, volatility or nonvolatility can be appropriately assigned to each two-terminal Mott memory device per lithographic design, and both neuron- and synapse-like devices are successfully integrated on a single chip. Feedforward excitation and inhibition neural motifs are demonstrated at hardware level, followed by simulation of network-level handwritten digit and fashion product recognition tasks with experimental characteristics. Spatially selective electron doping opens up previously unidentified avenues for integration of emerging correlated semiconductors in electronic device technologies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference56 articles.

1. B. Yan X. Cao H. Li paper presented at the 55th Annual Design Automation Conference San Francisco CA 24 June 2018.

2. Mott-transition-based RRAM

3. Electrical control of glass-like dynamics in vanadium dioxide for data storage and processing

4. J. Lin S. Sonde C. Chen L. Stan K. Achari S. Ramanathan S. Guha paper presented at 2016 IEEE International Electron Devices Meeting (IEDM) San Francisco CA 3 to 7 December 2016.

5. P.-Y. Chen J.-S. Seo Y. Cao S. Yu paper presented at 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) Austin TX 7 to 10 November 2016.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3