Extended theoretical modeling of reverse intersystem crossing for thermally activated delayed fluorescence materials

Author:

Hagai Masaya1ORCID,Inai Naoto1ORCID,Yasuda Takuma23ORCID,Fujimoto Kazuhiro J.145ORCID,Yanai Takeshi145ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan.

2. Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Kyushu, Japan.

3. Department of Applied Chemistry, Graduate School of Engineering, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Kyushu, Japan.

4. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan.

5. Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan.

Abstract

Thermally activated delayed fluorescence (TADF) materials and multi-resonant (MR) variants are promising organic emitters that can achieve an internal electroluminescence quantum efficiency of ~100%. The reverse intersystem crossing (RISC) is key for harnessing triplet energies for fluorescence. Theoretical modeling is thus crucial to estimate its rate constant ( k RISC ) for material development. Here, we present a comprehensive assessment of the theory for simulating the RISC of MR-TADF molecules within a perturbative excited-state dynamics framework. Our extended rate formula reveals the importance of the concerted effects of nonadiabatic spin-vibronic coupling and vibrationally induced spin-orbital couplings in reliably determining k RISC of MR-TADF molecules. The excited singlet-triplet energy gap is another factor influencing k RISC . We present a scheme for gap estimation using experimental Arrhenius plots of k RISC . Erroneous behavior caused by approximations in Marcus theory is elucidated by testing 121 MR-TADF molecules. Our extended modeling offers in-depth descriptions of k RISC .

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3