Single-shot optical neural network

Author:

Bernstein Liane1ORCID,Sludds Alexander12ORCID,Panuski Christopher1,Trajtenberg-Mills Sivan1,Hamerly Ryan13ORCID,Englund Dirk1ORCID

Affiliation:

1. Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar St, Cambridge, MA 02139, USA.

2. Lightmatter Inc., 100 Summer St, Boston, MA 02110, USA.

3. NTT Research Inc., Physics and Informatics Laboratories, Sunnyvale, CA 94085, USA.

Abstract

Analog optical and electronic hardware has emerged as a promising alternative to digital electronics to improve the efficiency of deep neural networks (DNNs). However, previous work has been limited in scalability (input vector length K ≈ 100 elements) or has required nonstandard DNN models and retraining, hindering widespread adoption. Here, we present an analog, CMOS–compatible DNN processor that uses free-space optics to reconfigurably distribute an input vector and optoelectronics for static, updatable weighting and the nonlinearity—with K ≈ 1000 and beyond. We demonstrate single-shot-per-layer classification of the MNIST, Fashion-MNIST, and QuickDraw datasets with standard fully connected DNNs, achieving respective accuracies of 95.6, 83.3, and 79.0% without preprocessing or retraining. We also experimentally determine the fundamental upper bound on throughput (∼0.9 exaMAC/s), set by the maximum optical bandwidth before substantial increase in error. Our combination of wide spectral and spatial bandwidths enables highly efficient computing for next-generation DNNs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference75 articles.

1. A. Krizhevsky I. Sutskever G. E. Hinton ImageNet classification with deep convolutional neural networks in Advances in Neural Information Processing Systems F. Pereira C. J. Burges L. Bottou K. Q. Weinberger Eds. (Curran Associates Inc. 2012) vol. 25 pp. 1097–1105.

2. A. Vaswani N. Shazeer N. Parmar J. Uszkoreit L. Jones A. N. Gomez Ł. Kaiser I. Polosukhin Attention is all you need in Advances in Neural Information Processing Systems I. Guyon U. Von Luxburg S. Bengio H. Wallach R. Fergus S. Vishwanathan R. Garnett Eds. (Curran Associates Inc. 2017) vol. 30 pp. 5998–6008.

3. A guide to deep learning in healthcare

4. Scaling for edge inference of deep neural networks

5. J. Kaplan S. McCandlish T. Henighan T. B. Brown B. Chess R. Child S. Gray A. Radford J. Wu D. Amodei Scaling laws for neural language models. arXiv:2001.08361 [cs.LG] (23 January 2020).

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3