Near-infrared light–driven biomass conversion

Author:

Hong Longfei1ORCID,Zhang Huiyan1ORCID,Hu Liangdong1ORCID,Xiao Rui1ORCID,Chu Sheng1ORCID

Affiliation:

1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.

Abstract

Current photocatalytic technologies mainly rely on the input of high-energy ultraviolet-visible (UV-vis) light to obtain the desired excited states with adequate energy to drive redox reactions, precluding the use of low-energy near-infrared (NIR) light that occupies ~50% of the solar spectrum. Here, we report the efficient utilization of NIR light by coupling the low-energy NIR photons with reactive biomass conversion. A unique mechanism of photothermally synergistic photocatalysis was revealed for the selective biomass conversion under NIR light. Using biomass-derived 5-hydroxymethylfurfural (HMF) conversion as a model reaction, it was found that NIR and UV-vis light featured markedly different reaction patterns. 5-Formyl-2-furancarboxylic acid (FFCA) was almost exclusively produced under NIR light, whereas UV-vis light favored the formation of 2,5-diformylfuran (DFF) as the major product. This work provides a paradigm for sustainable and selective chemical synthesis using the Earth’s abundant resources, sunlight and biomass.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3