High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport

Author:

Lu Gongxun12ORCID,Qiao Qiangqiang1ORCID,Zhang Mengtian2,Zhang Jinsen1ORCID,Li Shuai1ORCID,Jin Chengbin3ORCID,Yuan Huadong1,Ju Zhijin1ORCID,Huang Rong4ORCID,Liu Yujing1ORCID,Luo Jianmin1ORCID,Wang Yao1ORCID,Zhou Guangmin2ORCID,Tao Xinyong1ORCID,Nai Jianwei1ORCID

Affiliation:

1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

2. Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

3. College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.

4. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO), Suzhou 215123, China.

Abstract

Hybrid materials with a rational organic-inorganic configuration can offer multifunctionality and superior properties. This principle is crucial but challenging to be applied in designing the solid electrolyte interphase (SEI) on lithium metal anodes (LMAs), as it substantially affects Li + transport from the electrolyte to the anode. Here, an artificial SEI with an ultrahigh fluorine content (as high as 70.12 wt %) can be successfully constructed on the LMA using a high-voltage electrosynthesis strategy. This SEI consists of ultrafine lithium fluoride nanocrystals embedded in a fluorinated organic matrix, exhibiting excellent passivation and mechanical strength. Notably, the organic-inorganic interface demonstrates a high dielectric constant that enables fast Li + transport throughout the SEI. Consequently, LMA coated with this SEI substantially enhances the cyclability of both half-cells and full cells, even under rigorous conditions. This work demonstrates the potential of rationally designed hybrid materials via a unique electrosynthetic approach for advanced electrochemical systems.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3