Boosting internal quantum efficiency via ultrafast triplet transfer to 2H-MoTe 2 film

Author:

Jang Yu Jin12ORCID,Paul Kamal Kumar12ORCID,Park Jin Cheol13,Kim Meeree14ORCID,Tran Minh Dao12,Song Hyun Yong13ORCID,Yun Seok Joon12ORCID,Lee Hyoyoung134ORCID,Enkhbat Temujin5ORCID,Kim JunHo5ORCID,Lee Young Hee13ORCID,Kim Ji-Hee13ORCID

Affiliation:

1. Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.

2. Sungkyunkwan University, Suwon 16419, Republic of Korea.

3. Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

4. Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.

5. Department of Physics, Incheon National University, Incheon 22012, Republic of Korea.

Abstract

Organic systems often allow to create two triplet spin states (triplet excitons) by converting an initially excited singlet spin state (a singlet exciton). An ideally designed organic/inorganic heterostructure could reach the photovoltaic energy harvest over the Shockley-Queisser (S-Q) limit because of the efficient conversion of triplet excitons into charge carriers. Here, we demonstrate the molybdenum ditelluride (MoTe 2 )/pentacene heterostructure to boost the carrier density via efficient triplet transfer from pentacene to MoTe 2 using ultrafast transient absorption spectroscopy. We observe carrier multiplication by nearly four times by doubling carriers in MoTe 2 via the inverse Auger process and subsequently doubling carriers via triplet extraction from pentacene. We also verify efficient energy conversion by doubling the photocurrent in the MoTe 2 /pentacene film. This puts a step forward to enhancing photovoltaic conversion efficiency beyond the S-Q limit in the organic/inorganic heterostructures.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3