Ferroelectricity in a semiconducting all-inorganic halide perovskite

Author:

Zhang Ye1ORCID,Parsonnet Eric2ORCID,Fernandez Abel3,Griffin Sinéad M.45ORCID,Huyan Huaixun6,Lin Chung-Kuan14ORCID,Lei Teng1,Jin Jianbo1ORCID,Barnard Edward S.5ORCID,Raja Archana5,Behera Piush34ORCID,Pan Xiaoqing678ORCID,Ramesh Ramamoorthy234ORCID,Yang Peidong1349ORCID

Affiliation:

1. Department of Chemistry, University of California, Berkeley, CA 94720, USA.

2. Department of Physics, University of California, Berkeley, CA 94720, USA.

3. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

4. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

5. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697, USA.

7. Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA.

8. Irvine Materials Research Institute, University of California, Irvine, Irvine, CA 92697, USA.

9. Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA.

Abstract

Ferroelectric semiconductors are rare materials with both spontaneous polarizations and visible light absorptions that are promising for designing functional photoferroelectrics, such as optical switches and ferroelectric photovoltaics. The emerging halide perovskites with remarkable semiconducting properties also have the potential of being ferroelectric, yet the evidence of robust ferroelectricity in the typical three-dimensional hybrid halide perovskites has been elusive. Here, we report on the investigation of ferroelectricity in all-inorganic halide perovskites, CsGeX 3 , with bandgaps of 1.6 to 3.3 eV. Their ferroelectricity originates from the lone pair stereochemical activity in Ge (II) that promotes the ion displacement. This gives rise to their spontaneous polarizations of ~10 to 20 μC/cm 2 , evidenced by both ab initio calculations and key experiments including atomic-level ionic displacement vector mapping and ferroelectric hysteresis loop measurement. Furthermore, characteristic ferroelectric domain patterns on the well-defined CsGeBr 3 nanoplates are imaged with both piezo-response force microscopy and nonlinear optical microscopic method.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3