Distinct armchair and zigzag charge transport through single polycyclic aromatics

Author:

Zhang Miao123ORCID,Wu Zewen4,Jia Hongxing5,Li Peihui1ORCID,Yang Lei3,Hao Jie1,Wang Jinying16,Zhang Enyu1ORCID,Meng Linan2,Yan Zhuang2,Liu Yi3,Du Pingwu5ORCID,Kong Xianghua4ORCID,Xiao Shengxiong3ORCID,Jia Chuancheng12ORCID,Guo Xuefeng12ORCID

Affiliation:

1. Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China.

2. Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China.

3. The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

4. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

5. Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China.

6. Network for Computational Nanotechnology, College of Engineering, Purdue University, 298 Nimitz Dr., West Lafayette, IN 47906, USA.

Abstract

In aromatic systems with large π-conjugated structures, armchair and zigzag configurations can affect each material’s electronic properties, determining their performance and generating certain quantum effects. Here, we explore the intrinsic effect of armchair and zigzag pathways on charge transport through single hexabenzocoronene molecules. Theoretical calculations and systematic experimental results from static carbon-based single-molecule junctions and dynamic scanning tunneling microscope break junctions show that charge carriers are preferentially transported along the hexabenzocoronene armchair pathway, and thus, the corresponding current through this pathway is approximately one order of magnitude higher than that through the zigzag pathway. In addition, the molecule with the zigzag pathway has a smaller energy gap. In combination with its lower off-state conductance, it shows a better field-effect performance because of its higher on-off ratio in electrical measurements. This study on charge transport pathways offers a useful perspective for understanding the electronic properties of π-conjugated systems and realizing high-performance molecular nanocircuits toward practical applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3