Cell deformability drives fluid-to-fluid phase transition in active cell monolayers

Author:

Saito Nen123ORCID,Ishihara Shuji34ORCID

Affiliation:

1. Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.

2. Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Japan.

3. Universal Biology Institute, The University of Tokyo, Japan.

4. Graduate School of Arts and Sciences, The University of Tokyo, Japan.

Abstract

Cell deformability is an essential determinant for tissue-scale mechanical nature, such as fluidity and rigidity, and is thus crucial for tissue homeostasis and stable developmental processes. However, large-scale simulations of deformable cells have been restricted to those of polygonal-shaped cells, limiting our understanding of populations of arbitrarily deformable cells, such as mesenchymal, amoeboid cells, and nonconfluent epithelial cells. Here, we present an efficient approach for simulating large populations of nonpolygonally deformable cells with considerably higher computational efficiency than existing methods. Using the method, we demonstrate that the densely packed active cell population interacting via excluded volume interactions exhibits a fluid-to-fluid transition. An experimentally measurable index of topological defects, defined using the number of neighboring cells, is also proposed to characterize this transition. This study provides a flexible approach to tissue-scale cell population and a broader perspective on the biological fluid phases.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3