Regulating reconstruction of oxide-derived Cu for electrochemical CO 2 reduction toward n-propanol

Author:

Long Chang1234ORCID,Liu Xiaolong25ORCID,Wan Kaiwei25ORCID,Jiang Yuheng1ORCID,An Pengfei6ORCID,Yang Caoyu1,Wu Guoling1,Wang Wenyang12,Guo Jun7ORCID,Li Lei3ORCID,Pang Kanglei8,Li Qun1,Cui Chunhua3ORCID,Liu Shaoqin4ORCID,Tan Ting25ORCID,Tang Zhiyong12ORCID

Affiliation:

1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China.

2. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

3. Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

4. MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China.

5. CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China.

6. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.

7. State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.

8. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.

Abstract

Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO 2 reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C 3 products like n-propanol. Here, we simulate the reconstruction of CuO and Cu 2 O into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart Cu 2 O-derived Cu (Cu 2 OD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of Cu 2 OD-Cu, enabling the fast kinetics of CO 2 reaction and strengthened binding of *C 2 intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to ~17.9%, whereas the Cu 2 OD-Cu dominantly generates formate.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3