A partially equilibrated initial mantle and core indicated by stress-induced percolative core formation through a bridgmanite matrix

Author:

Wang Lin12ORCID,Fei Yingwei1ORCID

Affiliation:

1. Earth and Planetary Laboratory, Carnegie Institute for Science, Washington, DC, USA.

2. Bayerisches Geoinstitut, University Bayreuth, Bayreuth, Germany.

Abstract

The Earth’s core formation mechanism determines the siderophile and light elements abundance in the Earth’s mantle and core. Previous studies suggest that the sink of massive liquid metal through a solid silicate mantle resulted in an unequilibrated core and the lower mantle. Here, we show that percolation can be an effective core formation mechanism in a convective mantle and modify the compositions of the lower mantle and the core through partial equilibration between them. This grain-scale metal flow has a high velocity to meet the time constraint of core formation. The Earth’s core could have been enriched with light elements, and the abundance of the moderately siderophile elements in the mantle could have been elevated to the current value during this process. The trapped core-forming melt in the mantle during the stress-induced percolation can also explain the highly siderophile element abundance in the Earth’s mantle.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3