Global concurrent climate extremes exacerbated by anthropogenic climate change

Author:

Zhou Sha12ORCID,Yu Bofu3ORCID,Zhang Yao4ORCID

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China.

2. Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China.

3. School of Engineering and Built Environment, Griffith University, Nathan, Queensland, Australia.

4. Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Abstract

Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3