Affiliation:
1. Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK.
2. Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK.
3. Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK.
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal
Escherichia coli
, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The
E. coli
adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with
Pseudomonas
and
Proteus
. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献