Strain-switchable field-induced superconductivity

Author:

Sanchez Joshua J.12ORCID,Fabbris Gilberto3ORCID,Choi Yongseong3ORCID,DeStefano Jonathan M.2ORCID,Rosenberg Elliott2,Shi Yue2ORCID,Malinowski Paul24,Huang Yina5ORCID,Mazin Igor I.6ORCID,Kim Jong-Woo3ORCID,Chu Jiun-Haw2ORCID,Ryan Philip J.3ORCID

Affiliation:

1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Physics, University of Washington, Seattle, WA 98195, USA.

3. Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.

4. Department of Physics, Cornell University, Ithaca, NY 14853, USA.

5. Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, People’s Republic of China.

6. Department of Physics and Astronomy and Quantum Science and Engineering Center, George Mason University, Fairfax, VA 22030, USA.

Abstract

Field-induced superconductivity is a rare phenomenon where an applied magnetic field enhances or induces superconductivity. Here, we use applied stress as a control switch between a field-tunable superconducting state and a robust non–field-tunable state. This marks the first demonstration of a strain-tunable superconducting spin valve with infinite magnetoresistance. We combine tunable uniaxial stress and applied magnetic field on the ferromagnetic superconductor Eu(Fe 0.88 Co 0.12 ) 2 As 2 to shift the field-induced zero-resistance temperature between 4 K and a record-high value of 10 K. We use x-ray diffraction and spectroscopy measurements under stress and field to reveal that strain tuning of the nematic order and field tuning of the ferromagnetism act as independent control parameters of the superconductivity. Combining comprehensive measurements with DFT calculations, we propose that field-induced superconductivity arises from a novel mechanism, namely, the uniquely dominant effect of the Eu dipolar field when the exchange field splitting is nearly zero.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3