Digital quantum simulation of NMR experiments

Author:

Seetharam Kushal12ORCID,Biswas Debopriyo34ORCID,Noel Crystal34ORCID,Risinger Andrew4ORCID,Zhu Daiwei4ORCID,Katz Or3ORCID,Chattopadhyay Sambuddha2,Cetina Marko45ORCID,Monroe Christopher346ORCID,Demler Eugene7ORCID,Sels Dries89

Affiliation:

1. Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

3. Department of Electrical and Computer Engineering, Department of Physics, Duke Quantum Center, Duke University, Durham, NC 27708, USA.

4. Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742, USA.

5. Department of Physics, Duke Quantum Center, Duke University, Durham, NC 27708, USA.

6. IonQ Inc., College Park, MD 20740, USA.

7. Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland.

8. Department of Physics, New York University, New York, NY 10003, USA.

9. Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA.

Abstract

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3