Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications

Author:

Chorsi Meysam T.12ORCID,Le Thinh T.1ORCID,Lin Feng1ORCID,Vinikoor Tra2ORCID,Das Ritopa2ORCID,Stevens James F.1,Mundrane Caitlyn2,Park Jinyoung2ORCID,Tran Khanh T. M.2ORCID,Liu Yang1ORCID,Pfund Jacob3ORCID,Thompson Rachel2,He Wu4,Jain Menka35ORCID,Morales-Acosta M. Daniela5ORCID,Bilal Osama R.1ORCID,Kazerounian Kazem12ORCID,Ilies Horea1ORCID,Nguyen Thanh D.125ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

2. Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

3. Department of Physics, University of Connecticut, Storrs, CT 06269, USA.

4. Flow Cytometry Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT 06269, USA.

5. Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.

Abstract

Amino acid crystals are an attractive piezoelectric material as they have an ultrahigh piezoelectric coefficient and have an appealing safety profile for medical implant applications. Unfortunately, solvent-cast films made from glycine crystals are brittle, quickly dissolve in body fluid, and lack crystal orientation control, reducing the overall piezoelectric effect. Here, we present a material processing strategy to create biodegradable, flexible, and piezoelectric nanofibers of glycine crystals embedded inside polycaprolactone (PCL). The glycine-PCL nanofiber film exhibits stable piezoelectric performance with a high ultrasound output of 334 kPa [under 0.15 voltage root-mean-square (Vrms)], which outperforms the state-of-the-art biodegradable transducers. We use this material to fabricate a biodegradable ultrasound transducer for facilitating the delivery of chemotherapeutic drug to the brain. The device remarkably enhances the animal survival time (twofold) in mice-bearing orthotopic glioblastoma models. The piezoelectric glycine-PCL presented here could offer an excellent platform not only for glioblastoma therapy but also for developing medical implantation fields.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3