Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates

Author:

Wang Bai Yang12ORCID,Wang Tiffany C.13ORCID,Hsu Yu-Te4ORCID,Osada Motoki15ORCID,Lee Kyuho12ORCID,Jia Chunjing1,Duffy Caitlin4,Li Danfeng1ORCID,Fowlie Jennifer13ORCID,Beasley Malcolm R.3ORCID,Devereaux Thomas P.15ORCID,Fisher Ian R.13ORCID,Hussey Nigel E.46ORCID,Hwang Harold Y.13ORCID

Affiliation:

1. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

2. Department of Physics, Stanford University, Stanford, CA 94305, USA.

3. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

4. High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, Netherlands.

5. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

6. H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.

Abstract

The search for superconductivity in infinite-layer nickelates was motivated by analogy to the cuprates, and this perspective has framed much of the initial consideration of this material. However, a growing number of studies have highlighted the involvement of rare-earth orbitals; in that context, the consequences of varying the rare-earth element in the superconducting nickelates have been much debated. Here, we show notable differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These distinctions originate from the 4 f electron characteristics of the rare-earth ions in the lattice: They are absent for La 3+ , nonmagnetic for the Pr 3+ singlet ground state, and magnetic for the Nd 3+ Kramer’s doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd 3+ 4 f moments. Such robust and tunable superconductivity suggests potential in future high-field applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3