Single metal-organic framework–embedded nanopit arrays: A new way to control neural stem cell differentiation

Author:

Cho Yeon-Woo1ORCID,Jee Seohyeon2ORCID,Suhito Intan Rosalina1ORCID,Lee Jeong-Hyeon1ORCID,Park Chun Gwon34ORCID,Choi Kyung Min25ORCID,Kim Tae-Hyung1ORCID

Affiliation:

1. School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

2. Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.

3. Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

4. Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, ungkyunkwan University (SKKU) , Suwon, Gyeonggi 16419, Republic of Korea.

5. LabInCube Co. Ltd., A304-C2, 45, Yangcheong 4-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.

Abstract

Stable and continuous supply of essential biomolecules is critical to mimic in vivo microenvironments wherein spontaneous generation of various cell types occurs. Here, we report a new platform that enables highly efficient neuronal cell generation of neural stem cells using single metal-organic framework (MOF) nanoparticle–embedded nanopit arrays (SMENA). By optimizing the physical parameters of homogeneous periodic nanopatterns, each nanopit can confine single nMOFs (UiO-67) that are specifically designed for long-term storage and release of retinoic acid (RA). The SMENA platform successfully inhibited physical interaction with cells, which contributed to remarkable stability of the nMOF (RA⊂UiO-67) structure without inducing nanoparticle-mediated toxicity issues. Owing to the continuous and long-term supply of RA, the neural stem cells showed enhanced mRNA expressions of various neurogenesis-related activities. The developed SMENA platform can be applied to other stem cell sources and differentiation lineages and is therefore useful for various stem cell–based regenerative therapies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications;Biosensors;2024-08-22

2. Preface;ACS Symposium Series;2024-03-05

3. Editors’ Biographies;ACS Symposium Series;2024-03-05

4. Subject Index;ACS Symposium Series;2024-03-05

5. Title, Copyright, Foreword;ACS Symposium Series;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3