Structure and mechanism of the osmoregulated choline transporter BetT

Author:

Yang Tianjiao12ORCID,Nian Yuwei1ORCID,Lin Huajian1ORCID,Li Jing3ORCID,Lin Xiang4,Li Tianming1,Wang Ruiying1ORCID,Wang Longfei3ORCID,Beattie Gwyn A.5ORCID,Zhang Jinru4ORCID,Fan Minrui16ORCID

Affiliation:

1. CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

2. University of Chinese Academy of Sciences, Beijing 101408, China.

3. School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

4. State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.

5. Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA.

6. Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai 200032, China.

Abstract

The choline–glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo–electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa , BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3