Water-soluble extracellular vesicle probes based on conjugated oligoelectrolytes

Author:

Zhou Cheng12ORCID,Cox-Vázquez Sarah J.13,Chia Geraldine W. N.1,Vázquez Ricardo Javier13ORCID,Lai Hui Ying1ORCID,Chan Samuel J. W.1,Limwongyut Jakkarin4ORCID,Bazan Guillermo C.1345ORCID

Affiliation:

1. Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.

2. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China.

3. Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore.

4. Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

5. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.

Abstract

We developed a series of transmembrane conjugated oligoelectrolytes (COEs) with tunable optical emissions from the UV to the near IR to address the false-positive problem when detecting nanometer-sized extracellular vesicles (EVs) by flow cytometry. The amphiphilic molecular framework of COEs is defined by a linear conjugated structure and cationic charged groups at each terminal site. Consequently, COEs have excellent water solubility and the absence of nanoaggregates at concentrations up to 50 μM, and unbound COE dyes can be readily removed through ultrafiltration. These properties enable unambiguous and simple detection of COE-labeled small EVs using flow cytometry with negligible background signals. We also demonstrated the time-lapsed tracking of small EV uptake into mammalian cells and the endogenous small EV labeling using COEs. Briefly, COEs provide a class of membrane-targeting dyes that behave as biomimetics of the lipid bilayer and a general and practical labeling strategy for nanosized EVs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3