Distributed interfacing by nanoscale photodiodes enables single-neuron light activation and sensory enhancement in 3D spinal explants

Author:

Thalhammer Agnes1ORCID,Fontanini Mario1ORCID,Shi Jiuyun2ORCID,Scaini Denis1345ORCID,Recupero Luca1ORCID,Evtushenko Alexander6,Fu Ying6ORCID,Pavagada Suraj6ORCID,Bistrovic-Popov Andrea6,Fruk Ljiljana6,Tian Bozhi2ORCID,Ballerini Laura1ORCID

Affiliation:

1. International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy.

2. Department of Chemistry, University of Chicago, Chicago, IL, USA.

3. Elettra Sincrotrone Trieste S.C.p.A., Area Science Park, I-34149 Trieste, Italy.

4. Basque Foundation for Science, Ikerbasque, Bilbao 48013, Spain.

5. Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.

6. Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Abstract

Among emerging technologies developed to interface neuronal signaling, engineering electrodes at the nanoscale would yield more precise biodevices opening to progress in neural circuit investigations and to new therapeutic potential. Despite remarkable progress in miniature electronics for less invasive neurostimulation, most nano-enabled, optically triggered interfaces are demonstrated in cultured cells, which precludes the studies of natural neural circuits. We exploit here free-standing silicon-based nanoscale photodiodes to optically modulate single, identified neurons in mammalian spinal cord explants. With near-infrared light stimulation, we show that activating single excitatory or inhibitory neurons differently affects sensory circuits processing in the dorsal horn. We successfully functionalize nano-photodiodes to target single molecules, such as glutamate AMPA receptor subunits, thus enabling light activation of specific synaptic pathways. We conclude that nano-enabled neural interfaces can modulate selected sensory networks with low invasiveness. The use of nanoscale photodiodes can thus provide original perspective in linking neural activity to specific behavioral outcome.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3