Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control

Author:

Liang Zexi1ORCID,Joh Hyungmok1ORCID,Lian Bin1ORCID,Fan Donglei Emma12ORCID

Affiliation:

1. Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.

2. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Abstract

Swarming, a phenomenon widely present in nature, is a hallmark of nonequilibrium living systems that harness external energy into collective locomotion. The creation and study of manmade swarms may provide insights into their biological counterparts and shed light to the rules of life. Here, we propose an innovative mechanism for rationally creating multimodal swarms with unprecedented spatial, temporal, and mode control. The research is realized in a system made of optoelectric semiconductor nanorods that can rapidly morph into three distinct modes, i.e., network formation, collectively enhanced rotation, and droplet-like clustering, pattern, and switch in-between under light stimulation in an electric field. Theoretical analysis and semiquantitative modeling well explain the observation by understanding the competition between two countering effects: the electrostatic assembly for orderliness and electrospinning-induced disassembly for disorderliness. This work could inspire the rational creation of new classes of reconfigurable swarms for both fundamental research and emerging applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3