Affiliation:
1. NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan.
Abstract
Cavity optomechanics provides high-performance sensor technology, and the scheme is also applicable to liquid samples for biological and rheological applications. However, previously reported methods using fluidic capillary channels and liquid droplets are based on fixed-by-design structures and therefore do not allow an active free access to the samples. Here, we demonstrate an alternate technique using a probe-based architecture with a twin-microbottle resonator. The probe consists of two microbottle optomechanical resonators, where one bottle (for detection) is immersed in liquid and the other bottle (for readout) is placed in air, which retains excellent detection performance through the high optical
Q
(~10
7
) of the readout bottle. The scheme allows the detection of thermomechanical motion of the detection bottle as well as optomechanical drive and frequency tracking with a phase-locked loop. This technique could lead to in situ metrology at the target location in arbitrary media and could be extended to ultrasensitive biochips and rheometers.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献