Correlation inference attacks against machine learning models

Author:

Creţu Ana-Maria1ORCID,Guépin Florent2ORCID,de Montjoye Yves-Alexandre2ORCID

Affiliation:

1. EPFL, Lausanne, Switzerland.

2. Imperial College London, London, UK.

Abstract

Despite machine learning models being widely used today, the relationship between a model and its training dataset is not well understood. We explore correlation inference attacks, whether and when a model leaks information about the correlations between the input variables of its training dataset. We first propose a model-less attack, where an adversary exploits the spherical parameterization of correlation matrices alone to make an informed guess. Second, we propose a model-based attack, where an adversary exploits black-box model access to infer the correlations using minimal and realistic assumptions. Third, we evaluate our attacks against logistic regression and multilayer perceptron models on three tabular datasets and show the models to leak correlations. We lastly show how extracted correlations can be used as building blocks for attribute inference attacks and enable weaker adversaries. Our results raise fundamental questions on what a model does and should remember from its training set.

Publisher

American Association for the Advancement of Science (AAAS)

Reference51 articles.

1. A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection

2. Y. Wu M. Schuster Z. Chen Q. V. Le M. Norouzi W. Macherey M. Krikun Y. Cao Q. Gao K. Macherey J. Klingner A. Shah M. Johnson X. Liu Ł. Kaiser S. Gouws Y. Kato T. Kudo H. Kazawa K. Stevens G. Kurian N. Patil W. Wang C. Young J. Smith J. Riesa A. Rudnick O. Vinyals G. Corrado M. Hughes J. Dean Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144 (2016).

3. Siri Team (Apple) Deep learning for siri’s voice: On-device deep mixture density networks for hybrid unit selection synthesis (2017); https://machinelearning.apple.com/research/siri-voices.

4. Amazon Rekognition Moderating content; https://docs.aws. amazon.com/rekognition/latest/dg/moderation.html.

5. The rise of deep learning in drug discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3