Glass transition temperature as a unified parameter to design self-healable elastomers

Author:

Park Jae-Man1,Park Chang Seo1,Kwak Sang Kyu2,Sun Jeong-Yun13

Affiliation:

1. Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

2. Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.

3. Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea.

Abstract

Self-healing ability of materials, particularly polymers, improves their functional stabilities and lifespan. To date, the designs for self-healable polymers have relied on specific intermolecular interactions or chemistries. We report a design methodology for self-healable polymers based on glass transition. Statistical copolymer series of two monomers with different glass transition temperatures ( T g ) were synthesized, and their self-healing tendency depends on the T g of the copolymers and the constituents. Self-healing occurs more efficiently when the difference in T g between two monomer units is larger, within a narrow T g range of the copolymers, irrespective of their functional groups. The self-healable copolymers are elastomeric and nonpolar. The strategy to graft glass transition onto self-healing would expand the scope of polymer design.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3