Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV 6 Sn 6

Author:

Hu Yong1ORCID,Wu Xianxin23,Yang Yongqi4ORCID,Gao Shunye15,Plumb Nicholas C.1ORCID,Schnyder Andreas P.3,Xie Weiwei4,Ma Junzhang678ORCID,Shi Ming1ORCID

Affiliation:

1. Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

2. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

3. Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.

4. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.

5. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

6. Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China.

7. City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.

8. Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, China.

Abstract

Transition-metal-based kagome materials at van Hove filling are a rich frontier for the investigation of novel topological electronic states and correlated phenomena. To date, in the idealized two-dimensional kagome lattice, topologically Dirac surface states (TDSSs) have not been unambiguously observed, and the manipulation of TDSSs and van Hove singularities (VHSs) remains largely unexplored. Here, we reveal TDSSs originating from a ℤ 2 bulk topology and identify multiple VHSs near the Fermi level ( E F ) in magnetic kagome material GdV 6 Sn 6 . Using in situ surface potassium deposition, we successfully realize manipulation of the TDSSs and VHSs. The Dirac point of the TDSSs can be tuned from above to below E F , which reverses the chirality of the spin texture at the Fermi surface. These results establish GdV 6 Sn 6 as a fascinating platform for studying the nontrivial topology, magnetism, and correlation effects native to kagome lattices. They also suggest potential application of spintronic devices based on kagome materials.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3