Affiliation:
1. Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China.
2. Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark.
Abstract
Generation of single photons carrying spin and orbital angular momenta (SAM and OAM) opens enticing perspectives for exploiting multiple degrees of freedom for high-dimensional quantum systems. However, on-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge. Here, by using carefully designed anisotropic nanodimers fabricated atop a substrate, supporting surface plasmon polariton (SPP) propagation, and accurately positioned around a quantum emitter (QE), we enable nonradiative QE-SPP coupling and the SPP outcoupling into free-space propagating radiation featuring the designed SAM and OAM. We demonstrate on-chip room-temperature generation of well-collimated (divergence < 7.5°) circularly polarized (chirality > 0.97) single-mode vortex beams with different topological charges (𝓁 = 0, 1, and 2) and high single-photon purity,
g
(2)
(0) < 0.15. The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels and enable thereby realization of high-dimensional quantum sources for advanced quantum photonic technologies.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献