Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia

Author:

Zhou Yan1ORCID,Zhang Haowen1ORCID,Liu Dazhong1ORCID,Khashaveh Adel1ORCID,Li Qian1ORCID,Wyckhuys Kris A. G.1ORCID,Wu Kongming1ORCID

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.

Abstract

Insects provide critical ecosystem services such as biological pest control, in which natural enemies (NE) regulate the populations of crop-feeding herbivores (H). While H-NE dynamics are routinely studied at small spatiotemporal scales, multiyear assessments over entire agrolandscapes are rare. Here, we draw on 18-year radar and searchlight trapping datasets (2003–2020) from eastern Asia to (i) assess temporal population trends of 98 airborne insect species and (ii) characterize the associated H-NE interplay. Although NE consistently constrain interseasonal H population growth, their summer abundance declined by 19.3% over time and prominent agricultural pests abandoned their equilibrium state. Within food webs composed of 124 bitrophic couplets, NE abundance annually fell by 0.7% and network connectance dropped markedly. Our research unveils how a progressive decline in insect numbers debilitates H trophic regulation and ecosystem stability at a macroscale, carrying implications for food security and (agro)ecological resilience during times of global environmental change.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3