Ferroelectric FET-based context-switching FPGA enabling dynamic reconfiguration for adaptive deep learning machines

Author:

Xu Yixin1ORCID,Zhao Zijian2ORCID,Xiao Yi1ORCID,Yu Tongguang1,Mulaosmanovic Halid3ORCID,Kleimaier Dominik3ORCID,Duenkel Stefan3,Beyer Sven3,Gong Xiao4,Joshi Rajiv5ORCID,Hu Xiaobo2ORCID,Wen Shixian67,Rios Amanda Sofie6ORCID,Lekkala Kiran6,Itti Laurent6ORCID,Homan Eric1ORCID,George Sumitha8ORCID,Narayanan Vijaykrishnan1ORCID,Ni Kai2ORCID

Affiliation:

1. Pennsylvania State University, State College, PA 16802, USA.

2. University of Notre Dame, Notre Dame, IN 46556, USA.

3. GlobalFoundries Fab1 LLC & Co. KG, Dresden, Germany.

4. National University of Singapore, Singapore 119077, Singapore.

5. IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10562, USA.

6. University of Southern California, Los Angeles, CA 90089, USA.

7. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing, China.

8. North Dakota State University, Fargo, ND 58102, USA.

Abstract

Field programmable gate array (FPGA) is widely used in the acceleration of deep learning applications because of its reconfigurability, flexibility, and fast time-to-market. However, conventional FPGA suffers from the trade-off between chip area and reconfiguration latency, making efficient FPGA accelerations that require switching between multiple configurations still elusive. Here, we propose a ferroelectric field-effect transistor (FeFET)–based context-switching FPGA supporting dynamic reconfiguration to break this trade-off, enabling loading of arbitrary configuration without interrupting the active configuration execution. Leveraging the intrinsic structure and nonvolatility of FeFETs, compact FPGA primitives are proposed and experimentally verified. The evaluation results show our design shows a 63.0%/74.7% reduction in a look-up table (LUT)/connection block (CB) area and 82.7%/53.6% reduction in CB/switch box power consumption with a minimal penalty in the critical path delay (9.6%). Besides, our design yields significant time savings by 78.7 and 20.3% on average for context-switching and dynamic reconfiguration applications, respectively.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3