Strain propagation in layered two-dimensional halide perovskites

Author:

Fu Jianhui1ORCID,Xu Qiang1ORCID,Abdelwahab Ibrahim2ORCID,Cai Rui1ORCID,Febriansyah Benny3ORCID,Yin Tingting1ORCID,Loh Kian Ping2ORCID,Mathews Nripan4ORCID,Sun Handong1ORCID,Sum Tze Chien1ORCID

Affiliation:

1. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

2. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

3. Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.

4. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Abstract

Impulsive light excitation presents a powerful tool for investigating the interdependent structural and electronic responses in layered two-dimensional (2D) halide perovskites. However, detailed understanding of the nonlinear lattice dynamics in these soft hybrid materials remains limited. Here, we explicate the intrinsic strain propagation mechanisms in 2D perovskite single crystals using transient reflection spectroscopy. Ultrafast photoexcitation leads to the generation of strain pulses via thermoelastic (TE) stress and deformation potential (DP) interaction whence their detection proceed via Brillouin scattering. Using a two-temperature model together with strain wave propagation, we discern the TE and DP contributions in strain generation. Hot carrier cooling plays a dominant role in effecting the weak modulation amplitude. Out-of-plane lattice stiffness is reduced by the weak van der Waals bond between organic layers, resulting in a slow strain propagation velocity. Our findings inject fresh insights into the basic strain properties of layered perovskites critical for manipulating their functional properties for new applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3