Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis

Author:

Demarteau Jeremy1ORCID,Epstein Alexander R.2ORCID,Christensen Peter R.1,Abubekerov Mark1,Wang Hai1ORCID,Teat Simon J.3ORCID,Seguin Trevor J.4,Chan Christopher W.1ORCID,Scown Corinne D.5678ORCID,Russell Thomas P.4910ORCID,Keasling Jay D.56111213ORCID,Persson Kristin A.12ORCID,Helms Brett A.1414ORCID

Affiliation:

1. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

2. Materials Sciences and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

4. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

5. Joint BioEnergy Institute, Emeryville, CA 94608, USA.

6. Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

8. Energy and Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

9. Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA.

10. Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

11. Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.

12. Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China.

13. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.

14. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Footwear, carpet, automotive interiors, and multilayer packaging are examples of products manufactured from several types of polymers whose inextricability poses substantial challenges for recycling at the end of life. Here, we show that chemical circularity in mixed-polymer recycling becomes possible by controlling the rates of depolymerization of polydiketoenamines (PDK) over several orders of magnitude through molecular engineering. Stepwise deconstruction of mixed-PDK composites, laminates, and assemblies is chemospecific, allowing a prescribed subset of monomers, fillers, and additives to be recovered under pristine condition at each stage of the recycling process. We provide a theoretical framework to understand PDK depolymerization via acid-catalyzed hydrolysis and experimentally validate trends predicted for the rate-limiting step. The control achieved by PDK resins in managing chemical and material entropy points to wide-ranging opportunities for pairing circular design with sustainable manufacturing.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3