Fingerprinting eukaryotic metabolism across the animal kingdom using position-specific isotope analysis (PSIA) 13 C/ 12 C measurements

Author:

Fry Brian1ORCID,Carter James F.2ORCID,O’Mara Kaitlyn1ORCID

Affiliation:

1. Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.

2. Queensland Health, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia.

Abstract

Despite differences in their overall metabolism, eukaryotes share a common mitochondrial biochemistry. We investigated how this fundamental biochemistry supports overall metabolism using a high-resolution carbon isotope approach, position-specific isotope analysis. We measured carbon isotope 13 C/ 12 C cycling in animals, focusing on amino acids that are formed in mitochondrial reactions and are most metabolically active. Carboxyl isotope determinations for amino acids showed strong signals related to common biochemical pathways. Contrasting isotope patterns were measured for metabolism associated with major life history patterns, including growth and reproduction. Turnover of proteins and lipids as well as gluoconeogensis dynamics could be estimated for these metabolic life histories. The high-resolution isotomics measurements fingerprinted metabolism and metabolic strategies across the eukaryotic animal kingdom, yielding results for humans, ungulates, whales, and diverse fish and invertebrates in a nearshore marine food web.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3