Signatures of a spin-active interface and a locally enhanced Zeeman field in a superconductor-chiral material heterostructure

Author:

Chen Cliff1ORCID,Tran Jason1ORCID,McFadden Anthony2,Simmonds Raymond2ORCID,Saito Keisuke3,Chu En-De1ORCID,Morales Daniel1ORCID,Suezaki Varrick1ORCID,Hou Yasen45,Aumentado Joe2ORCID,Lee Patrick A.4ORCID,Moodera Jagadeesh S.45,Wei Peng1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA.

2. National Institute of Standards and Technology, Boulder, CO 80305, USA.

3. Rigaku Americas, a Division of Rigaku Americas Holding, The Woodlands, TX 77381, USA.

4. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. Francis Bitter Magnet Laboratory, and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

A localized Zeeman field, intensified at heterostructure interfaces, could play a crucial role in a broad area including spintronics and unconventional superconductors. Conventionally, the generation of a local Zeeman field is achieved through magnetic exchange coupling with a magnetic material. However, magnetic elements often introduce defects, which could weaken or destroy superconductivity. Alternatively, the coupling between a superconductor with strong spin-orbit coupling and a nonmagnetic chiral material could serve as a promising approach to generate a spin-active interface. Here, we leverage an interface superconductor, namely, induced superconductivity in noble metal surface states, to probe the spin-active interface. Our results unveil an enhanced interface Zeeman field, which selectively closes the surface superconducting gap while preserving the bulk superconducting pairing. The chiral material, i.e., trigonal tellurium, also induces Andreev bound states (ABS) exhibiting spin polarization. The field dependence of ABS manifests a substantially enhanced interface Landé g -factor ( g eff ~ 12), thereby corroborating the enhanced interface Zeeman energy.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3